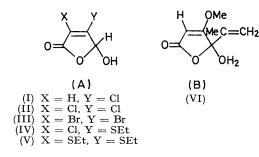
Hydrogen Bonding in 3,4-Disubstituted 5-Hydroxyfuran-2(5H)-ones


By S. Kovac • and E. Solcaniova, Institute of Organic Chemistry, Slovak Technical University, Bratislava, 1 Janska, Czechoslovakia

E. Beska and P. Rapos, Research Institute of Agrochemical Technology, Bratislava, Czechoslovakia

An abnormally strong self-association of 3,4-disubstituted 5-hydroxyfuran-2(5H)-ones in solution has been observed. All measurements reveal that in these compounds dimeric association is dominant. The association constants have been determined over the temperature range 23-55 °C, from which the enthalpies, $-\Delta H^0$, and entropies, $-\Delta S^0$, have been calculated.

PREVIOUSLY¹ we reported strong self-association of penicillic acid (VI) in solution. Unusually persistent self-association in solution occurring for concentrations >1 mm is already well known for certain classes of compounds such as carboxylic acids, oximes, dimedone derivatives,² and cyclohexane-1,3-diols,³ labdane-8a,15diol,⁴ 5 β -B-norcholestan-3 α ,6 α -diol,⁵ rosololactone derivatives,⁶ steroidal hydroxy-esters,⁷ dihydroxy- and trihydroxy-5_β-steroids,^{8,9} meta- and ortho-substituted phenols ¹⁰⁻¹² and 3-substituted benzo-[b]thiophens.¹³

We have sought other compounds which might be expected to behave in a similar way. We have examined five 3,4-disubstituted 5-hydroxyfuran-2(5H)ones, whose self-association is comparable to that of penicillic acid (VI).¹

EXPERIMENTAL

Measurements.-I.r. spectra were recorded with a Unicam SP 100 double beam instrument equipped with an SP 130 NaCl prism-grating monochromator. The calibration was checked against the spectrum of water and polystyrene film of 25 µm thickness after each group of measurements. Wavenumbers for the free and bonded OH and CO groups are accurate to $\pm 1 \text{ cm}^{-1}$. The apparent half band-widths, $\Delta v_{\frac{1}{2}}$, are quoted to the nearest integer; where necessary they were determined by reflection of the unperturbed side of the unsymmetrical bands. Intensities

¹ S. Kovac, E. Solcaniova, and G. Eglinton, Tetrahedron, 1969,

25, 3617.
² K. Nakanishi, 'Infrared Absorption Spectroscopy: Practical,' Holden-Day, San Francisco, 1964, pp. 50 and 65.
³ R. West, I. J. Korst, and W. S. Johnson, J. Org. Chem.,

A. J. Baker, G. Eglinton, A. G. Gonzales, R. J. Hamilton, and R. A. Raphael, J. Chem. Soc., 1962, 4705. ⁵ J. Pitha, J. Joska, and J. Fajkos, Coll. Czech. Chem. Comm.,

1963, 23, 2611.

T. Cairns, G. Eglinton, A. I. Scott, and D. W. Young, J. Chem. Soc. (B), 1966, 654.

7 H. B. Henbest, G. D. Meakins, and T. I. Wrigley, J. Chem. Soc., 1958, 2633. ⁸ W. S. Bennett, G. Eglinton, and S. Kovac, Nature, 1967,

214, 776.

are given as apparent molar absorptivities, ε , rounded to the nearest integer.

To obtain the thermodynamic quantities, measurements were carried out for 5 mm solutions in carbon tetrachloride at room and several other temperatures up to 55 °C, in 10.0 mm cells. The temperature was measured by a calibrated thermometer inserted in the cell which was heated by water from an ultrathermostat. Variation in the thickness of the cells with temperatures was neglected. The molar absorptivities of the free O-H stretching mode were plotted against concentration at each temperature and extrapolated to obtain the molar absorptivity at infinite dilution.

Association constants, $K = [dimer]/[monomer]^2$, were calculated from the equation $K = (1 - a)/ca^2$ where a is the value of the ratio of the apparent molar absorptivity of the free OH band at concentration c relative to its value at infinite dilution. Enthalpies $(-\Delta H^0)$ and entropies $(-\Delta S^0)$ were calculated from plots of log K against 1/T. Linear correlation parameters were calculated from statistical relationships ¹⁴ by use of a Gier digital computer.

Materials.—AnalaR CCl_4 was used directly. AnalaR CHCl₃ was dried several times by passage through a column of silica gel and used directly. The compounds used in the investigation were chromatographically pure and their preparation has been described elsewhere.¹⁵⁻¹⁷

RESULTS AND DISCUSSION

Results are in Tables 1 and 2. All compounds investigated show the presence of three hydroxyabsorptions for solution in CCl₄. Following the results obtained for penicillic acid (VI)¹ we assign the bands at higher wavenumbers to the free OH stretching absorption. The broad, concentration-dependent band at 3347—3392 cm⁻¹ is assigned to a closed ring of hydrogen bonds resulting from dimeric association.^{1,8,9.12}

The stretching absorptions of free and bonded OH were shifted downfield on changing from CCl₄ to CHCl₃ solution, as expected. Monohydroxy-compounds that

⁹ S. Kovac and G. Eglinton, *Tetrahedron*, 1969, 25, 3609.
 ¹⁰ F. A. L. Anet and J. M. Muchowski, *Proc. Chem. Soc.*, 1962,

219.

¹¹ S. Kovac and G. Eglinton, Tetrahedron, 1967, 25, 3599.

¹² S. Kovac, M. Dandarova, and A. Piklerova, Tetrahedron, 1971, 27, 2831.

¹³ I. Brown, G. Eglinton, and M. Martin-Smith, J. Chem. Soc., 1963, 2551.

14 J. Eichler, Chem. Listy, 1966, 60, 1203.

¹⁵ J. Elchel, *Chem. Listy*, 1960, 60, 1260.
¹⁵ M. Yanagita, *J. Pharm. Soc. Japan*, 1952, 72, 1383.
¹⁶ J. Hachihama, T. Shono, and S. Ikeda, *J. Org. Chem.*, 1964, 29, 137.

¹⁷ P. Winternitz, Thesis, Komensky University, Bratislava, 1968.

we have examined show strong self-association involving a carbonyl group. In the carbonyl region, two concentration-dependent bands are observed and this confirms that the C=O group is participating in hydrogen bonding.

The centre of the absorption band of the associated hydroxy-groups in compounds (I) and (IV)—(VI) and

solvent is to be expected, the absorption bands (Table 2) broaden and shift to lower wavenumber and the amount of interbonding is reduced.

The presence of two absorption bands assigned to the stretching of the free OH absorption suggests that two conformers may be in equilibrium. Thus, for CCl_4 solution we suggest conformer (A) with the 'free'

 TABLE 1

 Hydroxy and carbonyl stretching absorptions of 3,4-disubstituted 5-hydroxyfuran-2(5H)-ones in carbon tetrachloride solution

	Conc.	Cell ' paths	O-H										C=O					
			Free							Bonded			Free			Bonded		
Compound	(тм)	(mm)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Δv ₁ a	εa	v	Δvł «	εª	ν	Δv _i a	£ 4	paths (mm)	ς ν	Δv ₂ a		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Δv _i ^a	ε 4
(I)	$5.0 \\ 2.5$	$5.276 \\ 20.0$	$\begin{array}{c} 3603 \\ 3605 \end{array}$	$\frac{29}{29}$	80 90	$3573 \\ 3577$	$33 \\ 32$	$\begin{array}{c} 62 \\ 75 \end{array}$	$\frac{3382}{3387}$	$\begin{array}{c} 230 \\ 240 \end{array}$	$\begin{array}{c} 50 \\ 35 \end{array}$	0·964 0·964	$\frac{1805}{1805}$	$\frac{12}{11}$	$\begin{array}{c} 835\\ 880 \end{array}$	$\begin{array}{c}1769\\1770\end{array}$	20	$\frac{35}{30}$
	0.5	50.0	3605	$\frac{20}{31}$	100	3577	31	80	3392	210	(10)	5.276	1805	10	910	1772		15
(II)	0.5	50·0	3599	29	115	3570	36	90	3387	150	20	5.276	1821		30	1803	21	560
(III)	0.2	50·0	3599	32	110	3571	26	100	3387	180	20	5.276	1806	12	870			
(IV)	50 ·0	0.964	3600	32	40	3572	31	50	3387	230	80	0.1	1783		390	1764		350
	$10.0 \\ 5.0$	$2.736 \\ 9.66$	$\begin{array}{c} 3600 \\ 3600 \end{array}$	$33 \\ 27$	$\frac{75}{90}$	$\begin{array}{r} 3572 \\ 3574 \end{array}$	$\frac{38}{23}$	80 95	$3387 \\ 3387$	$\begin{array}{c} 205 \\ 210 \end{array}$	$\begin{array}{c} 40 \\ 25 \end{array}$	0·474 0·964	$1785 \\ 1785$	$17 \\ 16$	$\begin{array}{c} 590 \\ 655 \end{array}$			
	0.5	50·0	3602	33	$100 \\ 100$	3575	$\frac{25}{26}$	100	3387	210	(10)	5.276	1785	$15 \\ 15$	730			
(V)	50·0	2.736	3585	47	20	3571	35	25	3347	300	50	0.474	1775		200	1747		120
	10.0	5.276	3587	35	30	3571	35	35	3347	310	40	0.964	1777	22	245			
	$1 \cdot 0$	50.0	3590	24	40	3572	30	55	3347		(15)	5.276	1777	17	270			
(VI) ^b	8·0	5.0	3589	26	50				3302	226	80	0.5	$1777 \\ 1779$	$\binom{(23)}{20}$	$\begin{array}{c} 250 \\ 675 \end{array}$	$1746 \\ 1752$	28	480
1	0.8	20.0	3592	25	120	1			3345		(15)	5.0					1 (X/T)	(75)

 a v and Δv_{i} are in cm⁻¹, ε is 1 mol⁻¹ cm⁻¹; values in parentheses are approximate: ^b Values for penicillic acid (VI) taken from ref. 1 are included for comparison.

TABLE 2

Stretching absorptions of 3,4-disubstituted 5-hydroxyfuran-2(5H)-ones in chloroform solution

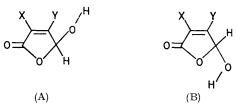
			O-H								C=0								C=C		
	C	Cell	Free					Bonded			Cell paths	Free			Bonded						
Compound	Conc. (м)	paths (mm)	v	Δvi a	e a	v	$\Delta v_{\frac{1}{2}} a$	€ 4	C v	Δvi a	e a	-(mm)	~v	Δvi a	e a	~	Δvi a	ea	ν	$\Delta \nu \mathbf{i} a$	e a
(I)	$0.1 \\ 0.05 \\ 0.01$	0·474 0·474 0·964	3593 3595 3595	(52) (51)	$45 \\ 45 \\ 55$	3569 3569 3567	(52) (51)	45 45 55	$3251 \\ 3253 \\ 3251$	345 330	$105 \\ 105 \\ 110$	0·1 0·1 0·474	1798 1797 1797	19 20 19	335 370 375	1769 1770 1769	22 21 21	570 630 630	$\begin{array}{c} 1624 \\ 1624 \\ 1624 \end{array}$	10 10 9	270 280 275
(11)	0·1 0·05 0·02	0·474 0·474 0·964	3591 3593 3593	(53) (50) (50)	40 45 50	3569 3567 3596	(53) (50) (50)	40 45 50	3229 3227 3227	350 355 357	$100 \\ 115 \\ 115 \\ 115$	0·1 0·1 0·474	$1816 \\ 1816 \\ 1816 \\ 1816$		80 90 85	1787 1788 1787	23 21 22	690 745 730	1614 1640 1641	11 12 11	230 250 245
(III)	0·1 0·05 0·02	0·474 0·474 0·964	3591 3591 3594	$(53) \\ (51) \\ (52)$	40 45 50	3569 3567 3567	(53) (51) (52)	40 45 50	3229 3230 3227	350 350 355	$105 \\ 110 \\ 115$	0·1 0·1 0 ·4 74	1798 1798 1798	27 28 30	340 350 350	1777 1777 1778	21 19 20	660 700 700	1619 1619 1620	12 12 13	200 220 220
(IV)	$0.1 \\ 0.05 \\ 0.01$	0·474 0·474 0·964	3591 3591 3594	(47) (46) (48)	45 50 50	$3564 \\ 3566 \\ 3566 \\ 3566$	(47) (46) (46)	45 50 50	3256 3256 3256	320 320 325	95 110 115	0·1 0·1 0·474				1773 1772 1773	24 24 23	625 650 660	1604 1604 1605	18 17 19	145 145 145
(V)	0·2 0·05 0·02	0·474 0·964 0·964				3569 3569 3569	100 100 100	30 35 35	3270 3270 3270	350 360 360	65 60 65	0·1 0·1 0·474				1761 1760 1762	35 36 34	460 500 500			
(VI) b	$0.08 \\ 0.02 \\ 0.01$	$0.51 \\ 2.0 \\ 2.0$				3574 3574 3573	42 40 41	75 95 100	$3342 \\ 3342 \\ 3342 \\ 3342$	260	40 20 (15)	0·11 0·11 0·11	1768 1767 1766	33 27 25	640 725 735				$1645 \\ 1644 \\ 1644$	13 13 13	1080 1090 1090
	a See note a of Table 1. b Data from ref. 1.																				

free hydroxy-groups in compounds (I) and (VI) shifts slightly to higher wavenumbers as the concentration is decreased (Table 1). A change in the half-width of *ca*. 5 cm⁻¹ occurs for all compounds over the range of concentration used, except for compound (V) where it is larger (Δv_{4} , 47 \longrightarrow 24 cm⁻¹).

In CHCl₃ solution where some interaction with the

hydroxy-group (3605 cm⁻¹) directed towards the π bond of the lactone ring; and conformer (B) with the 'free' hydroxy-group (3573 cm⁻¹) directed towards the oxygen of the lactone ring.

In CCl_4 conformation (B) of compounds (IV) and (V) is more favoured as can be seen by the increased intensity of the band at 3571 cm⁻¹. This may be


TABLE 3

Thermodynamic quantities for 3,4-disubstituted 5-hydroxyfuran-2(5H)-ones calculated from i.r. measurements in carbon tetrachloride

				O-1	H				
Com-			F	ree		Bon	ded	K	$-\Delta H^{0}$
pound	t/°C	va	£ ª	va	۵ ع	va	ε ª	1 mol ⁻¹	$-\Delta S^{0a}$
(I)	29.6	3603	82	3575	66	3383	46	80.6	
(-)	35.8	3605	86	3576	70	3387		57.9	
	40.2	3605	90	3577	72	3395	32	47.0	4.37
									± 0.15
	45.0	3605	92	3577	74	3397	27	37.0	10.11
									± 1.19
	50.0	3605	94	3577	75	3397	23	30.3	
	55.0	3605	94	3577	75	3397	20	26.3	
(IV)		3599	88	3572	92	3388	31	39.6	
	31.0	3600	92	3572	95	3392	26	$31 \cdot 8$	3.82
									± 0.27
	$35 \cdot 0$	3600	92	3573	94	3398	20	$23 \cdot 2$	9.21
									± 2.11
	40.2	3601	96	3574	96	3398	17	19.4	
	45.1	3602	98	3574	98	3406	15	16.0	
	50.0	3602	97	3574	97	3406	13	14.2	
(V)	26.6	3591	34	3573	43	3367	30	106.9	
	31.5	3592	36	3573	45	3377	26	82.7	
	35.4	3592	37	3573	47	3377	23	70·4	3.83
									± 0.17
	39.7	3592	38	3574	47	3377	20	59.2	8.17
									<u>+</u> 1·31
	44.5	3592	4 0	3575	48	3377	18	48 ·8	
	49.6	3591	4 0	3575	49	3377	16	$42 \cdot 9$	
(VI)		3586	59			3307	76	583.7	
	31.5	3587	63			3307	69	$463 \cdot 1$	6.52
									± 0.39
	$35 \cdot 4$	3588	70			3327	59	311.4	15.33
									± 3.05
	39.8	3589	76			3327	53	235.0	
	44.5	3589	79			3347	45	193.6	
	49.5	3589	84			3347	40	138.7	
a S	See not	e a in	Tal	ole 1.	$-\Delta E$	I^0 in 1	kcal	mol ⁻¹ .	$-\Delta S^0$ in

^a See note a in Table 1, $-\Delta H^0$ in kcal mol⁻¹, $-\Delta S^0$ in cal mol⁻¹ K⁻¹.

explained by the presence of the bulky SEt group attached to the C=C bond.

Support for this assignment is adduced from the presence of only one free OH band in the spectrum of penicillic acid (VI) in which the bulky $CH_2=CMe-$ group is attached to the same carbon atom as the OH group (Tables 1 and 2).

Examination of Dreiding models of the compounds investigated shows that there is no steric hindrance for intermolecular hydrogen bonding of the cyclic 'dimeric' type. The interacting OH and CO groups in the two conformes of this compound can approach within bonding distance $(O \cdots O, ca. 3 \text{ Å})$. The assumption that dimer formation is dominant seems to be reasonable because at the low concentration used (<10 mM) polymeric association is negligible.

The fact that a plot of log K against 1/T gave a straight line supports the occurrence of this equilibrium. Limits of accuracy were found to be ca. $\pm 6\%$ for $-\Delta H^0$ and $\pm 20\%$ for $-\Delta S^0$.

For the systems studied the largest K value was observed for compound (V) which might be explained by a steric effect [hydrogen bonding is less influenced by the nature of the solvent in (V) than in compounds (I)—(IV)]. Similar values for the thermodynamic quantities for compounds (I)—(V) suggest that the nature of substituents attached to the C=C bond does not play any significant role.

[1/682 Received, 4th May, 1971]